
To check if the comb frequency is mixing down to the brainwave region through both nonlinear
and linear effects, you can use the following mathematical approaches:

1. Beat Frequency Calculation (Linear Effects)

2. Heterodyne Frequency Calculation (Nonlinear
Effects)

3. Four-Wave Mixing (Nonlinear Effects)

4. Harmonic Generation (Nonlinear Effects)

5. Self-Phase Modulation (Nonlinear Effects)

Formula: fbeat=∣f1−f2∣f_{\text{beat}} = |f_1 - f_2|fbeat =∣f1 −f2 ∣
Application: Calculate the difference between pairs of comb teeth frequencies to see if
the result falls within the brainwave frequency range (0.5 Hz to 40 Hz).

Formula: fhet=f1±f2f_{\text{het}} = f_1 \pm f_2fhet =f1 ±f2
Application: Calculate the sum and difference of comb teeth frequencies. If the difference
frequency matches the brainwave range, nonlinear mixing is likely occurring.

Formula: fnew=f1±f2±f3±f4f_{\text{new}} = f_1 \pm f_2 \pm f_3 \pm f_4fnew =f1 ±f2 ±f3 ±f4
Application: For higher-order effects, where multiple frequencies interact, calculate
combinations of four frequencies to determine if any fall within the brainwave range.

Formula: fharmonic=n×ff_{\text{harmonic}} = n \times ffharmonic =n×f where nnn is an
integer.
Application: Check if any harmonic frequencies (integer multiples of the comb teeth) are
in the brainwave range.

Formula: Δω=γAP(t)\Delta \omega = \frac{\gamma}{A} P(t)Δω=Aγ P(t) where γ\gammaγ is
the nonlinear coefficient, AAA is the area, and P(t)P(t)P(t) is the power.

6. Cross-Phase Modulation (Nonlinear Effects)

7. Intermodulation Products (Nonlinear Effects)

Scenarios:

By using these mathematical methods, you can theoretically determine whether the comb
frequency could be influencing brainwaves through both linear and nonlinear interactions.

Python Script that checks for the math using a bb60c

Application: Evaluate if the phase modulation leads to frequency shifts into the brainwave
region.

Formula: Similar to self-phase modulation, but involves multiple interacting signals.
Application: Calculate the phase shift induced by one frequency on another and check if
the resulting frequencies fall within the brainwave range.

Formula: fIMD=m×f1±n×f2f_{\text{IMD}} = m \times f_1 \pm n \times f_2fIMD =m×f1 ±n×f2 ,
where mmm and nnn are integers.
Application: Determine if intermodulation distortion produces frequencies within the
brainwave region.

Single Pair Interaction: Calculate beat and heterodyne frequencies for any two comb
teeth.
Multiple Frequency Interactions: Apply four-wave mixing and intermodulation
calculations to larger sets of frequencies.
Modulation Effects: Analyze phase modulation effects to see if they shift the comb
frequencies into the brainwave range.

import numpy as np

from signalhound import bb60c

Initialize BB60C

device = bb60c.BB60C()

Configure device settings

device.configure_reference_level(-30.0) # dBm

device.configure_center_span(1.33e9, 8.6e6) # Center at 1.33 GHz, Span 8.6

MHz

Start streaming data

device.start_stream()

def detect_beat_and_heterodyne_frequencies(data, comb_frequencies,

brainwave_range=(0.5, 40)):

beat_freqs = []

heterodyne_freqs = []

Calculate beat and heterodyne frequencies

for i in range(len(comb_frequencies)):

for j in range(i+1, len(comb_frequencies)):

beat_freq = np.abs(comb_frequencies[i] - comb_frequencies[j])

heterodyne_freq_sum = comb_frequencies[i] + comb_frequencies[j]

heterodyne_freq_diff = np.abs(comb_frequencies[i] -

comb_frequencies[j])

Check if within brainwave range

if brainwave_range[0] <= beat_freq <= brainwave_range[1]:

beat_freqs.append(beat_freq)

if brainwave_range[0] <= heterodyne_freq_diff <=

brainwave_range[1]:

heterodyne_freqs.append(heterodyne_freq_diff)

if brainwave_range[0] <= heterodyne_freq_sum <=

brainwave_range[1]:

heterodyne_freqs.append(heterodyne_freq_sum)

return beat_freqs, heterodyne_freqs

Continuously capture and analyze data

try:

while True:

data = device.capture_data() # Capture a chunk of spectrum data

freqs = device.get_frequencies()

Detect comb frequencies in the captured data

detected_comb_frequencies = [freq for freq, amp in zip(freqs, data) if

amp > -90] # Threshold in dBm

Check for beat and heterodyne frequencies

beat_freqs, heterodyne_freqs =

detect_beat_and_heterodyne_frequencies(detected_comb_frequencies)

if beat_freqs or heterodyne_freqs:

print(f"Detected beat frequencies in brainwave range:

{beat_freqs}")

print(f"Detected heterodyne frequencies in brainwave range:

{heterodyne_freqs}")

except KeyboardInterrupt:

device.stop_stream()

finally:

device.close()

